DeepRange and 7Series P&A System

Reduce Your P&A Liability with the Subsea P&A
Combining the Wild Well DeepRange Cementing tool with our 7Series Intervention System creates an unparalleled plug and abandonment (P&A) system that delivers a highly cost-effective and regulatory-approved, rigless and riserless package.

Requiring only a multiservice vessel for deployment, our P&A system offers a field proven alternative to conventional, rig-based P&A operations while delivering enhanced performance.

Rapid Mobilization, Reliable Operation
For 40 years, Wild Well has supplied operators with industry-leading service whenever and wherever it’s needed. The Deep Range and 7Series continue that dedication to quality operations by offering subsea P&A services to a wide-range of applications.

Our wholly in-house approach includes extensive operational experience from a wide range of engineers and subsea well specialists. The Wild Well Advanced Engineering group complements this high level of expertise with services such as computational fluid dynamic, structural, and thermal analyses.

Covering Every Step of Your Subsea P&A Operation
Step 1: Pre-operational engineering and planning comprises creating and resolving interfaces with the well and vessel of choice, developing detailed operating procedures, and creating a project execution plan.

Step 2: Crews perform the temporary abandonment of the well, cutting and pulling the tubing before installing a cast-iron bridge plug and packer.
Step 3: The upper abandonment – consisting of an isolation bushing, tubing-conveyed perforating guns, and a seal assembly – are landed and latched into the 7Series and packer.

Step 4: Perforation charges are deployed on eline and are used to perforate the tubing into the B annulus.

Step 5: Circulation is established through the tubing, into the lower perforations, up the B annulus, out through the upper perforations, and back up the production annulus. The isolation bushing diverts flow to the return lines.

Step 6: The binary plug is circulated into the B annulus. After waiting on the cement to harden, a mandatory pressure test is performed on the tubing and annulus of the plug.

Step 7: Circulation is established through the C annulus by firing the previously set, tubing-conveyed upper perforation guns and eline conveyed lower guns.

Step 8: Circulation is established through the C annulus as with the B annulus before.

Step 9: The binary plug is circulated into the C annulus. The plug is left in a “balanced” condition with the production annulus. After waiting on the cement, testing is performed.

Step 10: The upper abandonment assembly is unlatched from the packer and pulled from the well. A cast-iron bridge plug is set above the highest perforations and cement is bailed as per regulations.

Hardware Highlights
- 7Series Intervention System
- Certified to 10,000 ft and 10,000 psi maximum working pressure
- Redundancy in the environmental and well barriers
- 45-second EQD with dual-disconnect points on all connections
- Shear seal ram can shear almost any toolstring, including 3½-in., 135,000 psi drillpipe
- Dual redundant controls systems
- 7 3/8 bore handles the largest crown plug

DeepRange Cementing Tool
- Rigless, riserless
- Resilient binary plug using resin and cement
- Coiled tubing circulation to wellbore
- Proven tooling methodology
- Robust, ROV-driven technology
- Minimally invasive procedure that maintains wellbore integrity