LOCATIONS

Corporate Office
Drilling Technology Center
2202 Oil Center Court
Houston, Texas 77073 USA

Branch Offices
UNITED STATES
Denver, Colorado
Odessa, Texas

INTERNATIONAL
Aberdeen, Scotland
Dammam, Kingdom of Saudi Arabia
Dubai, UAE
Kuala Lumpur, Malaysia
Moscow, Russia
Stavanger, Norway

Well Control Training Centers
UNITED STATES
Houston, Texas
Corpus Christi, Texas
Odessa, Texas
Tyler, Texas
Lafayette, Louisiana
Oklahoma City, Oklahoma
Casper, Wyoming
Williston, North Dakota
Canonsburg, Pennsylvania

INTERNATIONAL
Aberdeen, Scotland
Dubai, U.A.E.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Corporate Overview</td>
<td>1</td>
</tr>
<tr>
<td>Emergency Response Services</td>
<td>5</td>
</tr>
<tr>
<td>Blowout & Well Control Response</td>
<td>5</td>
</tr>
<tr>
<td>Pressure Control</td>
<td>5</td>
</tr>
<tr>
<td>Well Control Engineering Services</td>
<td>6</td>
</tr>
<tr>
<td>Blowout Rate Modeling (Worst Case Discharge Analysis)</td>
<td>6</td>
</tr>
<tr>
<td>Dynamic Kill Analysis</td>
<td>6</td>
</tr>
<tr>
<td>Broaching Simulation & Analysis</td>
<td>6</td>
</tr>
<tr>
<td>Bullheading Analysis</td>
<td>6</td>
</tr>
<tr>
<td>Dynamic Temperature Modeling</td>
<td>6</td>
</tr>
<tr>
<td>Shut-in Analysis</td>
<td>7</td>
</tr>
<tr>
<td>Real-Time Support for Critical Well Operations</td>
<td>7</td>
</tr>
<tr>
<td>Surge / Swab Modeling</td>
<td>7</td>
</tr>
<tr>
<td>Thermal Expansion Modeling</td>
<td>7</td>
</tr>
<tr>
<td>Well Control (Kick) Modeling</td>
<td>7</td>
</tr>
<tr>
<td>Well Control Risk Assessment</td>
<td>7</td>
</tr>
<tr>
<td>Advanced Crew Awareness Training</td>
<td>8</td>
</tr>
<tr>
<td>Engineering Analysis</td>
<td>9</td>
</tr>
<tr>
<td>Subsea Dispersion (Plume) Analysis</td>
<td>9</td>
</tr>
<tr>
<td>Atmospheric Dispersion Analysis</td>
<td>9</td>
</tr>
<tr>
<td>Radiant Heat Analysis</td>
<td>9</td>
</tr>
<tr>
<td>Explosion Analysis</td>
<td>9</td>
</tr>
<tr>
<td>Multiphase Flow Analysis</td>
<td>9</td>
</tr>
<tr>
<td>Erosion Analysis</td>
<td>9</td>
</tr>
<tr>
<td>Cryo-Freeze & Heat Transfer Analysis</td>
<td>9</td>
</tr>
<tr>
<td>Structural Engineering: Strength, Fatigue & Fracture</td>
<td>9</td>
</tr>
<tr>
<td>Structural Response to Explosion & Fire</td>
<td>10</td>
</tr>
<tr>
<td>Dropped Objects Risk Assessments</td>
<td>10</td>
</tr>
<tr>
<td>Forensic Studies</td>
<td>10</td>
</tr>
<tr>
<td>Design to Industry Standards</td>
<td>10</td>
</tr>
<tr>
<td>Fitness for Purpose Assessment</td>
<td>10</td>
</tr>
<tr>
<td>Risk Management Services</td>
<td>11</td>
</tr>
<tr>
<td>Well Control Emergency Response Plans</td>
<td>11</td>
</tr>
<tr>
<td>Emergency Response Plan Rollout</td>
<td>11</td>
</tr>
<tr>
<td>Emergency Response Training, Drills & Exercises</td>
<td>11</td>
</tr>
<tr>
<td>Well Control Response Cards</td>
<td>11</td>
</tr>
<tr>
<td>Source Control Response Plans</td>
<td>11</td>
</tr>
<tr>
<td>Source Control Response Exercises & Drills</td>
<td>11</td>
</tr>
<tr>
<td>Source Control Response Training</td>
<td>11</td>
</tr>
<tr>
<td>Well Control Equipment Survey</td>
<td>12</td>
</tr>
<tr>
<td>Flowback Equipment Survey</td>
<td>12</td>
</tr>
<tr>
<td>Logistics Plans for Well Control/Containment Equipment</td>
<td>12</td>
</tr>
<tr>
<td>Rig Site Crew Competency Assessment through Kick Drills</td>
<td>12</td>
</tr>
<tr>
<td>Well Integrity Services</td>
<td>12</td>
</tr>
<tr>
<td>Relief Well Services</td>
<td>14</td>
</tr>
<tr>
<td>Relief Well Plans</td>
<td>14</td>
</tr>
<tr>
<td>Integration in Emergency Response Plans</td>
<td>14</td>
</tr>
<tr>
<td>Well/Platform-Specific Relief Well Plans</td>
<td>14</td>
</tr>
<tr>
<td>Complexity Assessment</td>
<td>14</td>
</tr>
<tr>
<td>Complexity Mitigation</td>
<td>14</td>
</tr>
<tr>
<td>Relief Well Operations for Blowout Control</td>
<td>15</td>
</tr>
<tr>
<td>Plug & Abandonment Using a Relief Well</td>
<td>15</td>
</tr>
<tr>
<td>Ranging Services</td>
<td>15</td>
</tr>
<tr>
<td>Relief Well Workshops</td>
<td>16</td>
</tr>
<tr>
<td>Unconventional Intervention Services</td>
<td>17</td>
</tr>
<tr>
<td>Hot Tapping</td>
<td>17</td>
</tr>
<tr>
<td>Valve Drilling</td>
<td>17</td>
</tr>
<tr>
<td>Freezing</td>
<td>17</td>
</tr>
<tr>
<td>Abrasive Jet Cutting</td>
<td>17</td>
</tr>
<tr>
<td>Mechanical Cutting</td>
<td>17</td>
</tr>
<tr>
<td>ControlSEAL™ Resin Applications</td>
<td>17</td>
</tr>
<tr>
<td>Damaged Platform Structural Survey</td>
<td>18</td>
</tr>
<tr>
<td>Collapsed Platform Removal Modeling</td>
<td>18</td>
</tr>
<tr>
<td>Unconventional Well Intervention</td>
<td>18</td>
</tr>
<tr>
<td>Unconventional Plug & Abandonment</td>
<td>18</td>
</tr>
<tr>
<td>WellCONTROL™ Services</td>
<td>19</td>
</tr>
<tr>
<td>Capping Stack Interface Check</td>
<td>19</td>
</tr>
<tr>
<td>Capping Stack Installation Plans</td>
<td>19</td>
</tr>
<tr>
<td>Capping Stack Shut-in Plans</td>
<td>19</td>
</tr>
<tr>
<td>Logistics Plans</td>
<td>19</td>
</tr>
<tr>
<td>Sea Fastening Plans</td>
<td>19</td>
</tr>
<tr>
<td>Shallow Water Capping Plans</td>
<td>20</td>
</tr>
<tr>
<td>Subsea Well Control Equipment</td>
<td>20</td>
</tr>
<tr>
<td>Project Technical Support Services</td>
<td>21</td>
</tr>
<tr>
<td>Dedicated Technical Support</td>
<td>21</td>
</tr>
<tr>
<td>Field Abandonment: Advisory</td>
<td>21</td>
</tr>
<tr>
<td>Conventional & Hydraulic Workover Technical Support</td>
<td>22</td>
</tr>
<tr>
<td>Drill the Well On Paper (DWOP)</td>
<td>22</td>
</tr>
<tr>
<td>Well Control Training Services</td>
<td>23</td>
</tr>
<tr>
<td>WellSHARP® Well Control Training</td>
<td>23</td>
</tr>
<tr>
<td>Well Control Course Modules</td>
<td>24</td>
</tr>
<tr>
<td>Specialized Training Services</td>
<td>25</td>
</tr>
<tr>
<td>Training to Reduce Unscheduled Events (TRUE)</td>
<td>25</td>
</tr>
<tr>
<td>HPHT Well Control Training</td>
<td>25</td>
</tr>
<tr>
<td>Accumulator Workshops</td>
<td>25</td>
</tr>
<tr>
<td>Crew Awareness Orientation</td>
<td>25</td>
</tr>
<tr>
<td>Incident Command System (ICS) Training</td>
<td>25</td>
</tr>
<tr>
<td>Well Control Incident Management Training</td>
<td>25</td>
</tr>
<tr>
<td>Environmental Services</td>
<td>26</td>
</tr>
<tr>
<td>Environmental Hazard Consulting</td>
<td>26</td>
</tr>
<tr>
<td>Federal, State & Local Regulatory Liaison</td>
<td>26</td>
</tr>
<tr>
<td>Pollution Mitigation Advisory</td>
<td>26</td>
</tr>
<tr>
<td>Environmental Restoration Technical Support</td>
<td>26</td>
</tr>
<tr>
<td>Pollution Response Preparedness Training & Exercises</td>
<td>26</td>
</tr>
</tbody>
</table>
CORPORATE OVERVIEW

Founded in 1975, Wild Well Control is the world’s leading provider of onshore and offshore well control emergency response, pressure control, relief well planning, engineering, environmental, and training services. Headquartered in Houston, Texas, and with offices in eight other major cities, Wild Well provides its services on a global basis, and responds to an estimated 80% of the global well control response market.

Wild Well’s personnel and strategically located specialized well control equipment continue to position the company as a leading global provider of well control and related services.

Experience
It is the experience that Wild Well has gained over the past four decades in business that has placed it as the market leader in well control services. Personnel resources, specialized well control equipment resources, diverse well control services, a high-level safety culture, and new technology all deliver unmatched support in Wild Well’s position as a global leader in well control. However, it is the experience of responding to hundreds of well control emergencies around the world that prepares and qualifies Wild Well as the market leader.

Wild Well’s personnel are unmatched when it comes to field experience and well control engineering support. This did not just happen overnight. It takes years of dedication to a singular pursuit, such as well control, to produce a team of professionals and a line-up of specialized well control equipment designed to provide world-class well control solutions. The culture at Wild Well fosters the development of the best well control personnel, the best specialized equipment, and the best engineered solution in the safest manner.

Personnel Resources
On a global basis, Wild Well has the largest number of dedicated well control personnel. Wild Well’s personnel are full-time employees dedicated to well control work entirely each and every day.

Typically mobilized in groups of two, well control specialist teams will include as many as six to eight for a response to a major blowout. Wild Well’s well control engineering staff provides continuous support to the well control specialists.

Wild Well’s Engineering Department includes a diverse range of engineering disciplines:

- Petroleum
- Mechanical
- Relief Well
- Structural
- Civil
- Computational Fluid Dynamics
- Cementing
- Subsea
- Marine

<table>
<thead>
<tr>
<th>Well Control Response</th>
<th>2015</th>
<th>2016</th>
<th>2017</th>
<th>2018</th>
<th>2019</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blowout with Fire</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>Blowout</td>
<td>12</td>
<td>17</td>
<td>36</td>
<td>36</td>
<td>31</td>
</tr>
<tr>
<td>Pressure Control</td>
<td>34</td>
<td>25</td>
<td>32</td>
<td>36</td>
<td>25</td>
</tr>
<tr>
<td>Unconventional Intervention</td>
<td>37</td>
<td>48</td>
<td>59</td>
<td>74</td>
<td>106</td>
</tr>
<tr>
<td>Total</td>
<td>86</td>
<td>93</td>
<td>126</td>
<td>148</td>
<td>166</td>
</tr>
</tbody>
</table>
This diversity of engineering disciplines allows Wild Well to review, plan, and provide the best engineered solution for the pressure control or well problem. Wild Well’s engineers have engineering experience working for operators around the world. With open access to such a vast knowledge and experience base, Wild Well analyzes scenarios from different perspectives to ensure a well control problem is addressed in the most efficient and safest manner possible.

Wild Well’s Training Department has a total of 22 certified well control instructors. Accredited by both International Well Control Forum (IWCF) and International Association of Drilling Contractors (IADC), Wild Well is the worldwide leading provider of well control training. Well control courses are developed in-house, and incorporate real-life well control incidents and their related causes into the well control curriculum and training.

Specialized Well Control Equipment Resources
Wild Well maintains the largest inventory of well control, firefighting, and special services equipment in the industry. Wild Well houses a majority of the specialized well control equipment at its Houston Headquarters where in only a matter of hours the equipment can be mobilized to any part of the world. In addition, Wild Well stores and maintains specialized well control equipment at other locations in the US and internationally.

Because Wild Well designs, engineers, and fabricates a majority of the specialized well control equipment itself, the history of all of the equipment movements and maintenance have been tracked through an electronic inventory system; ensuring that it is ready at all times for shipment to remote areas in response to a well control emergency.

Inventoried items include 2,500 to 6,000 GPM Wild Well fire pumps (several rated for Arctic use), hydraulic and conventional Athey Wagons and accessories, fully stocked hose and monitor containers, hot tap tools, gate valve drilling units, and cryogenic freeze packages. Wild Well also possesses the largest inventory of abrasive jet cutters in the industry, which Wild Well designed, engineered, and fabricated.

Emergency Well Control / Firefighting Equipment maintained in:
- Houston, Texas
- Odessa, Texas
- Greeley, Colorado
- Ralston, Pennsylvania
- Abu Dhabi, UAE
- Port Harcourt, Nigeria
- Singapore

Special Service Equipment Packages are maintained in:
- Houston, Texas
- Odessa, Texas
- Greeley, Colorado
- Bakersfield, California
- Aberdeen, Scotland
- Abu Dhabi, UAE
- Al Khobar, KSA
- Cairo, Egypt
- Singapore
- Port Harcourt, Nigeria

Also included in the specialized well control equipment are two complete subsea capping/containment systems. Each WellCONTAINED subsea capping stack system includes a modular 18 3/4-in., 15K subsea capping stack. Both systems have a choke and valve manifold that will facilitate flow back to the surface, if required. In addition, each system has a set of large-scale hydraulic shears for debris removal along with the necessary equipment required to inject dispersant into the uncontrolled flow.

WellCONTAINED Subsea Capping Equipment Packages are maintained in:
- Aberdeen, Scotland
- Singapore

Services
Through its years in the well control industry, Wild Well has developed and offered many services, all related to well control. While Wild Well’s core business pertains to responding to a well control emergency in the field, there are many other services provided in support of those field services. These emergency response services are provided on a daily basis around the world in a variety of environments: onshore, inland waters, offshore, and in deep water.
In recent years, Wild Well developed several services that assist the operator and drilling contractor in managing the risks associated with the drilling, completion, production, and plug and abandonment of oil and gas wells. Wild Well also worked with several insurance underwriters to develop specialty Risk Management Services to help reduce the inherent risks associated with oil and gas wells.

Quality
Wild Well follows an extremely aggressive quality management system that provides structure to our services and our various processes, including Quality, Safety, and Environmental. The following quality certifications are maintained by Wild Well:

New Technology
Wild Well continuously explores and implements new technology in its lineup to improve its services so that customers have up-to-date access to the latest in well control response and well control engineering advancements. In recent years, Wild Well worked with Texas A&M University in finalizing the use of cryogenic freezing as a means to installing a temporary barrier inside the wellbore. Today, cryogenic freezing is an important service line within our Special Services Department, because it provides a means to isolate the well through the temporary placement of an ice plug in the wellbore. This service proves invaluable in many instances by allowing the operator/contractor to continue with its drilling or completion operations in a relatively short period of time.

In 2015, Wild Well completed a nine-well campaign off the west coast of Africa using a newly designed, riserless subsea plug and abandonment tool. Since that time, Wild Well completed other multi-well projects, and received the 2017 Offshore Technology Conference Spotlight on New Technology Award for its riserless P&A technology. Currently, Wild Well is in the process of developing the second generation of subsea P&A tooling that can be set up to operate either with a riser or riserless. The riserless option saves the operators tens of millions of dollars in the P&A of subsea wells when compared to conventional P&A operations.

In 2007, an epoxy resin, known as ControlSEAL, was developed within the Superior Group to help Wild Well’s Subsea Department resolve sustained casing pressure problems. Recently, there has been a greatly renewed interest in using ControlSEAL as the primary barrier at the reservoir when plugging and abandoning wells. Wild Well is currently completing a multi-million dollar study that compares the longevity of cement versus epoxy resin in the wellbore environment. Current findings indicate that epoxy resin’s various strengths and testing far outweigh the use of cement. Wild Well continues its efforts to educate the market of this new technology and what it means for the “permanent” sealing of reservoir pressures in plug and abandoned wells.

A Worldwide Service of Excellence
Whether in terms of personnel, specialized well control equipment, emergency well control response services, engineering services, training services, safety, quality, new technology, or well control experience, Wild Well is the best in the well control industry.
Products & Services
EMERGENCY RESPONSE SERVICES

Blowout & Well Control Response
Catastrophic well control incidents occur unexpectedly and necessitate immediate emergency response, regardless of time or day. With the world’s largest and most experienced staff of Well Control Specialists, Wild Well maintains Blowout & Well Control Response teams on standby at all times – 24 hours a day, 7 days a week, 365 days a year – thus ensuring rapid response to the site of the incident to mitigate uncontrolled fires, well flows, etc., and restore control of the well.

- Well capping
- Well re-heading
- Well-related fire suppression
- Deluge systems

Pressure Control
Wild Well provides specialist assistance – available in-office and/or on location in the field – to resolve well control complexities to regain hydrostatic control of a given well. In complex wells, the margin between fracture gradient and pore pressure gradient is narrow, which makes formation breakdown always a possibility.

Wild Well possesses the necessary expertise and skills to help clients return to normal operations after encountering well control issues such as:

- High-volume kicks
- High-pressure kicks
- Underground blowouts
- Kicks with lost circulation
- Kicks with no pipe in the hole
- Kicks in oil-based drilling fluids
- Kicks with drillstring off bottom
- Pressure control in H₂S environments
- Pressure control in HPHT wells
WELL CONTROL ENGINEERING SERVICES

Blowout Rate Modeling (Worst Case Discharge Analysis)
Blowout rate modeling uses multiphase simulations to calculate the maximum expected flow rate from producible reservoirs or target formations for a given well and reservoir configuration. The software used for these simulations is a well performance, design and optimization program suited for modeling most types of well configurations found worldwide in the oil and gas industry today. By modelling each component from the reservoir fluid, the reservoir flow potential and the pressure losses in the well, the software is capable of calculating the maximum flow rate that a reservoir or a series of reservoirs could produce in case of a blowout.

Dynamic Kill Analysis
Dynamic kill analysis offers a dynamic simulation of blowouts as well as operating parameters for the necessary kill process. It involves the latest technology in transient multiphase simulation, and provides the following unique features: blowout rate, kill rate, wellbore pressure profiles, volumes, fluid density, hydraulic horsepower, and other dynamic kill parameters needed to restore control. Operational parameters, such as pump rate and fluid density, can be changed in response to developing well conditions, just as in an actual kill operation. Wellbore response to such changes are visualized immediately in the live graphics.

Broaching Simulation & Analysis
Broaching simulation and analysis consists of the evaluation of a shut-in well’s behavior once pressure at the casing shoe exceeds the fracture gradient of the surrounding formation. The transient simulation technology analyzes fracturing of the formation, upward propagation of the fractures, charging up of any exposed formation above the casing shoe, and eventual broaching to the surface.

Bullheading Analysis
Bullheading analysis consists of multiphase simulation and analysis of the well control parameters (e.g., pressure, density, pump rate, etc.) required to successfully bullhead a well. Modeling addresses risks during bullheading (e.g., injectivity of the exposed zones, charging zones, effects on downhole activity such as well flow and formation pressure and “ballooning” or underbalance, potential broaching of shallow casing shoe, etc.). The incorrect application of bullheading methods can lead to a range of undesirable outcomes including influx remaining in the wellbore, inadvertent breakdown of the casing shoe, underground blowout, etc.

Dynamic Temperature Modeling
Dynamic temperature modeling provides a simulation of the dynamic temperatures that a rig’s well control systems could potentially encounter during kick circulation to determine whether or not the temperature rating for each component is sufficient to safely handle kicks encountered while drilling. The modeling also addresses the considerable temperature variations in the well during normal HPHT and deepwater drilling operations and impact of thermal expansion on well control operations.
Shut-in Analysis
When considering shutting in the well with a capping stack, this analysis determines the maximum expected pressure at the relevant casing shoe(s) by simulating the dynamic pressures and temperatures that a rig’s well control systems could potentially encounter during capping operations. The analysis helps address and mitigate the risks of hard vs. soft shut-in methods.

Real-Time Support for Critical Well Operations
Working from the office or on-site as part of the drilling team, Well Control Engineers are available to provide real-time well control expertise and engineering support during critical well operations. Support activities include reviewing daily drilling reports (DDR) to evaluate well control parameters (e.g., kick tolerance, Emergency Shutdown (ESD), Equivalent Circulating Density, gas readings, hole behavior, connection and trip behavior, etc.) and keeping watch for developing trends to ensure relevant pressure management and/or well control issues are proactively addressed.

Surge / Swab Modeling
In HPHT wells where there are small margins, it is critical it is to maintain circulation during swabbing operations to avoid underbalanced conditions. Wild Well provides hydraulic simulations to analyze wellbore pressures, ECD, return rate & max string movement throughout the wellbore. Simulations are also done to evaluate at the pressure changes effects during drilling, tripping, or cementing operations. Wild Well uses the Drillbench dynamic drilling simulation software as a tool for performing steady state computations of hydraulic parameters in an oil or gas well during drilling operations.

Thermal Expansion Modeling
During well kill operations, thermal expansion of the drilling fluid is suspected in masking the correct shut-in pressure values. To address this, Wild Well performs multiphase simulation-based analyses to determine the potential for thermal expansion issues for a given well.

Well Control (Kick) Modeling
Wild Well uses Drillbench Rigsite Kick software to generate integrated, time-transient, multiphase flow simulations to examine the full, dynamic behavior of the wellbore and its contents from time of influx, through flow check, shut-in and subsequent kill operations. In addition to deriving standard kill methods, the full effects of special kill procedures (e.g., extended shut-in, mud weight or pump rate changes, etc.) are further analyzed for their impact on well bore integrity. Data from these simulations can also be used to evaluate casing design and surface well control equipment.

Well Control Risk Assessment
The well control risk assessment process involves the identification, evaluation, and ranking of well control risks associated with drilling and intervention operations. Risks identified during the assessment are ranked according to their probability and impact, and for all risk events ranked as high or medium, common mitigation practices and contingency plans are provided. Results are summarized in a series of figures and tables, based on different phases of well operations, for final presentation. The collective risk assessment process is conducted by Wild Well’s experienced engineering and operations teams.
Advanced Crew Awareness Training

Advanced Crew Awareness Training is based on well-specific computer kick simulations that show how a kick will act in the hole for a given well. These simulation-based training sessions help crews understand the impact and dynamics of well control considerations such as detection limitation, gas migration, BOP closure time, and response time delay. The training aims to improve crew awareness and prepare them to make proper decisions during operations if and when kicks are encountered.
ENGINEERING ANALYSIS

Subsea Dispersion (Plume) Analysis
Subsea dispersion (plume) analysis simulations model the behavior of oil and gas as they rise from the wellhead to the sea surface during a subsea blowout. The hydrocarbon plume is modeled along with current and local metocean conditions using computational fluid dynamics (CFD) techniques. Results from this analysis can be used to determine the surface arrival point and concentration of hydrocarbons at the surface. An atmospheric gas dispersion study may follow a subsea dispersion analysis to track the gas once it reaches the surface. Wild Well is a member of the SURE joint industry project which has conducted large scale offshore experiments to validate the industry leading CFD simulations.

Atmospheric Dispersion Analysis
Atmospheric dispersion analysis uses calculations and/or simulations to predict the propagation of gas clouds from a blowout, leak, or flare. Gaussian plume analysis or computational fluid dynamics are used to determine the concentration of flammable or toxic gases from the source as gas is dispersed by wind and atmospheric turbulence. Wind speed, temperature, humidity, and atmospheric stability are accounted for in the analysis as is the presence of terrain and surrounding structure, if required. Results from the analysis can be used in planning of safe zones and exclusion zones for well control operations, relief well operations, and overall risk of exposing the surrounding areas to the gas cloud.

Radiant Heat Analysis
Radiant heat analysis uses calculations and/or simulations to determine the magnitude of radiant heat energy generated by a fire. Results of this analysis can be used to determine the level of risk to personnel and/or equipment that are in proximity to a well fire or flare. This analysis is often followed up by an assessment of the effects of the fire on surrounding equipment and structure to examine the potential for an event to escalate.

Explosion Analysis
Explosion analysis offers studies of explosion severity should a gas cloud ignite. It is aimed at quantifying risk to personnel, equipment, and infrastructure. Explosion analysis can include both high level assessments as well as detailed CFD analysis. This analysis is often followed up by an assessment of the effects of explosion on surrounding structure. This could be to support a voluntary ignition plan or other safety case assessments.

Multiphase Flow Analysis
Multiphase flow analysis includes a simulation of any complex 3D fluid flow involving liquids, gases, and solids as well as any combination of these using CFD. Examples include predicting erosion, separation behavior, e.g., mud-gas separator performance or subsea plume analysis. Virtually any fluid dynamics problem can be solved in this way.

Erosion Analysis
Erosion analysis uses CFD to predict the erosion rates in pipework and equipment carrying particle laden fluids to assess the integrity of the system. This can be applied to production pipework and equipment, but also to well control equipment for incident response planning (e.g., erosion during well kill & diverter system integrity checks).

Cryo-Freeze & Heat Transfer Analysis
Cryo-freeze and heat transfer analysis is a detailed thermal analysis using CFD to solve complex heat transfer problems not readily solvable with other means. It can be applied across a wide spectrum of problem types, e.g., calculation of freeze time and ice plug size and shape during well freeze operations or heat up or cooldown of subsea hardware during startup and shut-in.

Structural Engineering: Strength, Fatigue & Fracture
Our structural team comprises licensed professionals who perform structural assessments through a combination of calculation and analysis. Wild Well is the expert in using finite element analysis (FEA) to solve the most challenging structural and mechanical engineering problems; applicable for any type of structure, equipment or material, both onshore and offshore.
Structural Response to Explosion & Fire
Structural response to explosion and fire offers a structural analysis specific to an explosion or fire event to determine the potential levels of escalation and risk to personnel and equipment following a loss of hydrocarbon containment or loss of well control.

Dropped Objects Risk Assessments
Wild Well can provide a dropped object risk assessment to satisfy the latest BSEE requirements. Wild Well offers a 4-tier approach to the risk assessment where the engineering complexity is progressively enhanced based on initial findings. Tier 1 is a probability-based approach as per DNV recommended practice. This can then be supplemented by three additional tiers using FEA and CFD to more precisely quantify the risk if the first tier findings show the risk is unacceptable.

Forensic Studies
All of the above capabilities can be applied during the planning and design phases of a project, but can also be utilized to investigate post-event if something has not worked as planned. By performing a variety of engineering studies, lessons may be learned and operating practices or designs improved.

Design to Industry Standards
Wild Well experts use both classical methods and FEA to deliver the design of structures and equipment to API, AISC, ASME, DNV, NORSOK and other Industry Standards.

Fitness for Purpose Assessment
If there is a structural problem, Wild Well’s Advanced Engineering team has the capability to solve it – whether it is designing equipment and skids to meet DNV rules or determining whether a design is fit for purpose.
RISK MANAGEMENT SERVICES

Well Control Emergency Response Plans
Well control emergency response plans provide a process for responding to and safely managing well control emergencies. The objective of this process is to provide a framework for the response and management of a range of well control incidents, with various tasks and guidelines defined to ensure that all aspects of the response are given adequate consideration. This includes the organizational structure of the client’s response team, and subsequent interface with the Wild Well response team.

Emergency Response Plan Rollout
The training will also review the Well Control/Source Control Emergency Response Plan and Logistics Plan to guide attendees in using these plans as management tools. Training will integrate well control response operations and procedures, which can be customized to specific well control event scenarios using the client specific data. The training will also provide timeline guidelines and logistics considerations to guide attendees during a well control event. Modules for this can include:
- Well Control/Source Control Management Overview
- Logistics Planning Considerations
- Logistics Plan Overview
- WCERP/SCERP Plan Overview
- Well Control Equipment/Other Equipment Overview

Emergency Response Training, Drills & Exercises
Emergency response training, drills, and exercises reinforce incident response preparedness by working through a specific scenario. The scenario and exercise gives companies an opportunity to practice effective implementation of their Emergency Response Plan. Wild Well facilitators direct and evaluate the response, and additionally conduct an after-action review, to capture any lessons learned that could be included in the Emergency Response Plan. Through participation in the Table-Top exercise, companies are able to validate the effectiveness of their response, identify areas for improvement and ensure the preparedness of its personnel.

Well Control Response Cards
The primary objective of the Well Control Response Card (WCRC) is to be a quick reference tool for critical information that personnel on location or in the operations center can access and utilize quickly. The WCRC typically includes the information required to determine the appropriate response level and corresponding immediate actions, as well as client specific call out notification protocol, site access routes, and predetermined areas for staging of firefighting and other well control equipment. Also included are site-specific response considerations that identify potential risks unique to the well site and adjacent areas. The WCRC is meant to supplement a Well Control Emergency Response Plan and provide a quick reference and a streamlined process to field personnel in the event of a well control incident.

Source Control Response Plans
Source control response plans provide access to Wild Well expertise in regard to client-specific Source Control needs. They are based upon the general guidelines for Source Control response (operational overviews to include SIMOPS, Site Survey, BOP Intervention, Subsea Dispersants, Debris Removal, Capping, Flowback/Surface Containment, Relief Well, Well Kill, Engineering Services, and Decontamination/Demobilization). The plans provide an overview of Well Containment equipment used for source control operations, and includes emergency response guidance checklists/task lists, and procedures for use in an actual response. The plans also cover components of well control emergency response when developed for floating operations.

Source Control Response Exercises & Drills
Source control response exercises and drills focus on the individual or entire Source Control Emergency Response Organization to allow each group, unit, and/or branch (within Source Control Org) to use tools within the Source Control Emergency Response Plan (SCERP). Exercises are focused on testing and improving an organization’s subsea well containment response (source control) capabilities in addition to using procedures and bridging existing plans (Crisis Management, Oil Spill Response Plans, etc.).
Source Control Response Training
This training provides a strategic response management overview for an incident involving an uncontrolled subsea well control event. The training will also review the Source Control Emergency Response Plan and Logistics Plan to guide attendees in using these plans as management tools. Reference is also given to the WellCONTAINED System operational guidance procedures, which can be customized to a specific well control event using the data embedded in the documents. The training will also provide timeline guidelines and logistics considerations to guide attendees during a well control event as well.

Well Control Equipment Survey
The Well Control Equipment Survey consists of a visual, external inspection of well control equipment after all equipment has been rigged up and tested, and after the surface or intermediate casing has been set, and before or immediately after the shoe has been drilled out. Upon survey completion, all findings, immediate concerns, recommendations, suggestions, and comments are compiled in a formal report and presented to the client. The report is fully documented with photographs taken on location during the site visit.

Flowback Equipment Surveys
Flowback surveys ensure that the right equipment, properly trained personnel and procedures are in place to so that operations can be conducted safely. The Flowback Equipment Survey will be conducted after the equipment is rigged up and preferably before operations commence. Upon completion of the field survey, the onsite representative will be briefed on all findings. A final report will then be issued to the operator and will include feedback provided to the supervisor onsite. Post survey results can be implemented and can provide an immediate improvement to operational safety.

Logistics Plans for Well Control / Containment Equipment
The purpose of this plan is to provide a detailed document for mobilizing a Capping & Containment System in an emergency situation dealing with a subsea well control event from the system’s point of rest to drilling locations globally. The plan will include: current status of the equipment, ongoing maintenance, mobilization preparations, origin operations, mode of transportation and destination operations (to include handover of responsibilities).

Rig Site Crew Competency Assessment through Kick Drills
The Rig Site Crew Competency Assessment through Kick Drills is conducted on location at the rig site. Wild Well’s kick drill assessments are a quantitative and qualitative measurement of a rig crew’s knowledge to detect and properly respond to a kick event.

Well Integrity (WI) Services
Each operator is in a different place on their well integrity journey. Some have embraced the most stringent regulations globally, while others are just investigating the path forward. Wild Well will tailor our well integrity offering to meet the specific needs and unique aspects of the targeted area of operations.
Manual Development & Implementation

- Well Integrity Manual development starts with developing an understanding of 1) client reference documents that require compliance, 2) the area of operations, and 3) key stakeholders. Next, existing programs are reviewed for potential inclusion and updating. Then, a fit-for-purpose manual is developed in close collaboration with the stakeholders. Finally, the well integrity manual draft is provided for final review and discussions on rollout.

Well Integrity Management System Gap Assessment

- The Well Integrity Management System (WIMS) Gap Assessment examines over 20 different categories. If desired, three optional areas, OBO, M&A and subsea wells, can also be reviewed. The gap assessment examines these key areas with reference back to industry standards. Each line item in the assessment references the standard where the item originated. To ensure industry best practices are considered, all references are checked. If desired, the assessment can address coverage, compliance, effectiveness, understanding and competence.

Risk Assessment

- The Well Integrity risk assessment can be focused on a specific field to identify specific issues or review of the Well Integrity Management System (WIMS). The assessment will be conducted with company personnel to identify the risk, current mitigation measures, and recommend additional steps.

Well Operating Limit (MAWOP) Analysis

- The Maximum Allowable Wellhead Operating Pressure (MAWOP) is defined in API RP 90. The engineer will work closely with the operator to gather key data required for these calculations. As wells age, and deteriorate due to corrosion, erosion, and other factors, it is critical that their status is quantified.

Comprehensive Surface Equipment Survey

- Wellhead surveys are conducted by the Special Services team. If required, a Senior Well Integrity Engineer may be involved for non-standard issues. The audit will include wellhead inspection, annular pressure identification, schematics, minor non-invasive repairs, and ranking. This will allow the operator to 1) understand and quantify their risks and potential liability, 2) categorize the wells, 3) prioritize and bundle wells for surface intervention, and update records. This process will significantly reduce the field’s risk profile.

Comprehensive Well Library and Monitoring Program

- A Well Integrity Engineer and specialist will work to gather the necessary data pertaining to each well that will be included in the library. Once the data has been collected, it will be processed and input to the management system. Once per month, the client will provide collected pressure data that will be input into the system. Wild Well will process the data against the previously calculated MAWOP and send a monthly report for each well that is being monitored. These reports will allow the operator to focus on higher risk wells.

Well Integrity Advisors assist clients in evaluating their well integrity issues and develop a forward plan to mitigate the issues.
RELIEF WELL SERVICES

Relief Well Plans
Wild Well offers full-service relief well design and delivery process planning and development, including site selection, rig selection, well construction, wellhead design, casing design, hydraulics design, intercept coordination and tool design, well kill design, blowout well pressure recording, and integrity status.

Integration in Emergency Response Plans
A Relief Well Plan is specific to an operating area. It is a subset of all incident emergency response plans (ERP) and the Source Control Emergency Response Plan (SCERP) and has the following hierarchy:

- Relief Well Plan
- General Relief Well Response Plan
- Specific Relief Well Complexity Assessments
- General Blowout Rate and HSE consequence assessment
- Operational Complexity
- Well Intersection and Hydraulic Kill Complexity
- Blowout Plug and Abandonment Complexity

Well/Platform-Specific Relief Well Plans
Well/Platform-Specific Relief Well Plans address specific operational concerns for each of the following topics/areas:

- Operational, Logistics & Equipment Requirements
- Intersection & Ranging
- Hydraulic Communication & Kill
- Plug & Abandonment via Relief Well

Complexity Assessment
Wild Well analyzes the subject well, set of wells and/or platform structure, identifies the complexity of a relief well operation (i.e., degree of difficulty based on key variables), and estimates the time to construct a relief well and regain control following a blowout. The results of this assessment are categorized for the operator’s consideration.

Complexity Mitigation
Once the operator has finished considering the results of the complexity assessment and finalized their drilling plans, Wild Well's Relief Well Experts complete the Relief Well Plan with a focus on mitigating the remaining complexities of the anticipated relief well operation, should such need arise.
Relief Well Operations for Blowout Control
Wild Well provides Relief Well Operations services to intercept and kill a blowout well when surface intervention or capping requires an extended period of time, and/or when such efforts may not succeed. These services include:

Project Engineering & Design
With the world's foremost team of Relief Well Experts, Wild Well offers unparalleled Project Engineering and Design services to ensure proper planning and oversight for the safe and successful execution of the Relief Well Operation.

Relief Well Intersection Management
Provide on-site management of:
- Relief Well Intersection Process
- Intercept depth(s)
- Constraints on relief well surface location(s)
- Target and adjacent well position uncertainties
- Hydraulic communication method(s)
- Target ranging strategy
- Subsurface drilling and well control hazards
- Relief well(s) trajectories
- Casing design
- Drilling program
- Kill program integration

Hydraulic Kill Management
Provides on-site management of:
- Operator and service company technical support personnel
- Blowout and kill simulation specialists and software
- High pressure pumping personnel and equipment
- Kill fluid storage and transfer personnel and equipment
- Mud plant and kill fluid personnel and equipment
- Specialty reactive kill fluids and polymers personnel and equipment

Wellsite Supervision
Supervision of Drilling, Testing and Completion Operations for relief well intersections including the on-site management of:
- Operator and service company technical support personnel
- Directional drilling and Measuring while drilling (MWD) personnel and equipment
- Borehole surveying personnel and equipment
- Homing-in (electromagnetic ranging) and wireline personnel and equipment
- Milling and perforating (to gain hydraulic communication) personnel and equipment
- Daily and final reports for specialty intersection services

Plug & Abandonment Using a Relief Well
When there is no surface access, plug and abandonment of blowout wells has become a more prominent use of relief wells.

Ranging Services
Ranging services use passive-magnetics or active-electromagnetic ranging, which both depend on steel, such as casing or drillstring, in the target well. Wellbore positioning is critical in reducing risk and increasing value in well construction. It impacts the entire life cycle of the well, including the ability to efficiently plan and execute a relief well. An understanding of the full cycle of wellbore positioning activities is critical for intercepting geological targets, avoiding adjacent wells and geological hazards, planning relief well trajectories, and managing trajectory positional uncertainty to improve subsurface modelling correlations. It’s important to verify that grid, magnetic declination, and convergence are correct by surveying surface locations directly.
Relief Well Workshops

Wild Well’s Relief Well Workshops provide an introduction to the fundamentals of relief wells. In addition to covering the fundamentals, these workshops can also be customized for a specific well to enhance context. Examples include:

- Relief Well Plans
- As a subset of Incident Emergency Response Plans
- Well/Platform-specific planning
- Complexity Assessments
- Complexity Mitigation
- Secondary Relief Well Mitigation Plans
- Relief Well Execution
- Relief Well Intersection – Management
- Kill Operations – Management

- The various phases of a successful relief well:
- Planning
- Drilling
- Intercept
- Kill
- Plug and Abandonment

Attendees will also participate in hands on exercises where they’ll work in teams to frame a Relief Well solution, and will apply lessons learned from the workshop.
UNCONVENTIONAL INTERVENTION SERVICES

Hot Tapping
Hot tapping is used for low and high pressure, bolt-on hardware applications for tubing or casing up to 36 inches. Normal use is to identify trapped pressure or to provide an access point for bleed off or kill operations. Service on bull plugs and flanges is also available.

Valve Drilling
Valve drilling includes Hydraulic Gate Valve Drilling Equipment capable of drilling ball and gate valves to 5 1/8 inch 15K. Service on tungsten carbide coated gates is also available.

Freezing
Cryogenic Freeze is an isolation technique used to provide a pressure-testable barrier to allow safe work at the wellhead. This service is available for all tubing and casing sizes and freezes can be held in place indefinitely.

Abrasive Jet Cutting
Abrasive Jet Cutting is a well intervention tool normally used during a blowout where damaged surface equipment must be removed while the well is uncontrolled. The system uses high pressure water and sand as a cutting medium.

Mechanical Cutting
Hydraulically supplied shears are used for cutting metal debris offshore above or below the water line. Clamshell cutters are used for precision cutting of tubing or casing to support well control projects. Rail mills are also provided to make vertical cuts as well. Typical field applications include re-heading, conductor cuts, and re-facing damaged flanges.

Wild Well has a range of mechanical cutting equipment suited for various applications including shears, clamshells, diamond wire saws and frog cutters.

ControlSEAL™ Resin Applications
ControlSEAL is an award-winning, two-part system of an epoxy resin and chemical hardener specialized for use in well remediation operations. Each resin design is formulated and optimized to meet well specific parameters and can be easily mixed and placed with conventional cementing equipment. ControlSEAL’s superior mechanical, chemical and rheological properties contributes to a product that outperforms cement as a zonal isolation material and enhances well integrity.
Damaged Platform Structural Survey
The Damaged Platform Structural Survey includes a thorough review of the as-built platform, accommodations, equipment, and wellhead/wellbores both above sea level and below. This is compared to the actual condition of the platform after damage (through pictures and measurements) to model the damaged platform for developing platform removal modelling, planning safe access, and all future intervention planning.

Physical inspection data from the damaged platform will be compared to as-built information.

Collapsed Platform Removal Modeling
Collapsed Platform Removal Modeling is used to develop a full 3D model of the damaged platform both above sea level and below, which is updated as debris is removed and wellbores are accessed. This becomes a valuable planning tool for all debris removal, wellbore access, and intervention planning and allows the full project team to understand the condition of the damage work area as work progresses.

Unconventional Well Intervention
Unconventional Well Intervention is based on the type of damage and the final disposition of the facility, and then the most effective intervention method is selected. This can include subsea hot tap, direct wellhead intervention, subsea re-installation of a new wellhead, and can also involve conventional equipment such as pumping, wireline, coiled tubing and snubbing.

Unconventional Plug & Abandonment
For severely damaged wells with no feasible workover options or for damaged wells near the end of their life, permanent plug and abandonment may be the best option. Achieving the plug and abandonment will include Unconventional Well Intervention and conventional well servicing equipment.

Subsea Intervention Technology – DeepRange P&A Tool
DeepRange is a highly effective riserless P&A tooling and methodology that is used to bring subsea wellbores from TA through P&A by isolating outer annuli. The patented technology perforates and circulates plugging material into outer annuli.
WellCONTAINED™ SERVICES

Capping Stack Interface Check
The Capping Stack Interface Check analyzes customer-supplied drawings to verify connector type and check for interference with guide funnels, guide post, and frames. If any issues are identified, the plan will include mitigation recommendations.

Capping Stack Installation Plans
Wild Well offers the following types of Capping Stack Installation Plans:

Well-Specific
This provides a detailed plan once the Capping Stack enters the water until the landing out of the Capping Stack on a well, the connector has been locked on the mandrel, and the stack has been disconnected from the deployment vessel while in the ‘Flow to Sea’ configuration.

MODU-Specific
Following Wild Well personnel’s completion of a Rig Site Survey and related data gathering activities, a Capping Stack Deployment Assessment for the Drillship or MODU surveyed is developed to cover:
- Logistics of getting the capping stack equipment on board the drilling rig
- Feasibility assessment of assembly of the capping stack on board the drilling rig
- Detailed list of equipment needed for stack-up and testing in BOP cart on drillship
- Detailed stack-up plan and testing procedure in drillship BOP carts
- Review of customer provided bathymetry and subsea soil data (if desired) to determine possible locations for setting subsea mud mats or suction piles for wet parking of capping stack
- Evaluation of methods to keel haul the capping stack to get it under the rig

The final report will include recommendations for the best method for running the capping stack from the drilling rig, loading diagrams, layout drawings, and logistics from dock to rig.

Capping Stack Shut-in Plans
Capping Stack Shut-in Plans cover the period after the Capping Stack downward looking connector has been locked. The plan will also include the closing of the BOPs, chokes, and outlet valves, as well as installation of the tertiary cap, if needed.

NOTE: The provided shut-in plans cover only operation of the equipment in order to shut in on the well and does not take into account well conditions or well monitoring. Those additional details would be provided by the Well Control Group during an incident based upon the actual well data.

Logistics Plans
Logistics Plans provide a detailed plan for mobilizing a Capping & Containment System from its point of rest to the drilling location in response to a subsea well control event. The plan will include: current status of the equipment, ongoing maintenance, mobilization preparations, origin operations, mode of transportation, and destination operations (to include handover of responsibilities).

Sea Fastening Plans
Sea Fastening Plans include detailed engineering drawings and calculations for sea fastening the capping stack, shears, or dispersant equipment onto a specific deployment vessel. Deliverables will be detailed enough to provide to a shipyard or welding crew to perform the required work.
Shallow Water Capping Plans
These plans cover the necessary preparations and methodologies for deploying a capping stack in 1,500 ft of water or less, and includes plume analysis to determine the probable location and concentration of surface gas clouds. It also covers deployment vessel selection and deployment methodologies based upon the site specific surface conditions.

Subsea Well Control Equipment
Wild Well provides Subsea Capping and Containment Equipment access to clients through several membership options. Membership is subject to the terms and conditions of a separate Equipment Access Agreement.

Members receive access to the following equipment:
- Subsea Capping Stacks
- Subsea Dispersant Equipment Packages
- Subsea Debris Removal Equipment Packages

WellCONTAINED is a comprehensive solution to global deepwater well control incident prevention and response.
PROJECT TECHNICAL SUPPORT SERVICES

Dedicated Technical Support
Dedicated Technical Support from Wild Well includes dedicated engineer(s) to provide technical expertise and support for drilling, completion, workover, and intervention operations with a primary focus on well control. Working as a member of the client’s project team, the technical support personnel will embed within the project’s day-to-day operations. This provides the client continuous well control support by an engineer who is well versed in their activity and has an established trusted relationship with their personnel. Depending on need, several types of support assignments are available, such as:

Rig-based: Personnel located at the rig site to assist with pressure control and well control-related activity. This can be dedicated to a single rig or a shared resource between a few rigs that are located on the rig drilling critical sections.

Client Office-based: These “Well Control Desk Engineers” are embedded in the client’s engineering and operational teams to provide well control technical support which may include, but are not limited to:
- Evaluate well control risks for all operations
- Support client well control drills
- Analyze ongoing operations to identify possible operational improvements to reduce the frequency, severity, and duration of well control incidents.
- Review well control equipment specifications
- Critical hole section monitoring
- Gap analysis of client well control documents
- Lead relevant discussions on various well control topics with client engineering staff
- Conduct well control studies
- Conduct data gathering for WCERP, WCERP updates, and modeling work
- Provide office support for well control events

Client Office-based & First Responders: These personnel are also embedded in the client’s engineering and operational teams to provide well control office and field technical support, which may include, but are not limited to:
- Act as technical liaison between field operations, Wild Well main office and client office personnel
- Support field operations with forward planning and project memos
- Review well control equipment specifications
- Conduct well control studies
- Conduct data gathering for WCERP, WCERP updates, and modelling work
- Conduct well control equipment audits as needed
- Well control support for client organizations as needed
- Participate in risk assessments

Wild Well Office-based: These personnel are located in Wild Well’s office and can provide support for in the client’s engineering and operational teams, which may include, but are not limited to:
- Critical hole section monitoring
- Well Control Modeling
- Engineering studies on possible barrier failure mode and mitigations
- Gap analysis of client well control documents
- Provide technical well control advice and review to client engineering projects

Field Abandonment: Advisory
Engineers will provide technical support for abandonment operations ranging from team member to project manager. Activities shall include, but are not limited to, well control risk assessment, review of client provided procedures, and operational well control support.
Conventional & Hydraulic Workover Technical Support
Project “desk engineers” support hydraulic workover operations. Activities shall include, but are not limited to, equipment specification, candidate review and selection, operational procedures, Hydraulic Workover (HWO) and ancillary equipment specification, communications plans, HWO unit acceptance audits, risk assessment and operational support.

Drill the Well On Paper (DWOP)
Wild Well provides full-service DWOP workshop Subject Matter Experts (SME) to participate in pre-spud workshops to address the particular requirements of a drilling project from a well control aspect. Workshop participants perform an in-depth review and analysis of the well control aspects of drilling a well including kick tolerance, casing shoe depths, shut-in analysis, dynamic kill analysis, relief well plans and blowout preventer equipment (BOPE) configuration.
WELL CONTROL TRAINING SERVICES

WellSHARP® Well Control Training
Wild Well offers the following IADC accredited training courses:

Introductory
The introductory IADC-recommended curriculum covers basic skills for floorhands, roustabouts, unit assistants, and new employees over a two-day class. The course focuses on crew awareness of well control equipment and procedures. This course is available at our training center or your location.

Drilling -Surface Only (Driller & Supervisor)
The Drilling Course provides students with the tools for developing practical problem-solving tactics and strategies when confronted with a well control incident; focus on kick detection, shut-in procedures, calculations, and standard well control methods.

Drilling-Surface with Subsea Supplement
Subsea Supplement covers well control methods and techniques for surface and deepwater subsea environment. It is designed to familiarize the student with surface well control as well as subsea choke line friction pressure (CLFP) using various sized choke lines, kick detection, circulating gas through long choke/kill lines, and special subsea applications of well control methods.

Service Company Rig Operator Workover
The Workover Course reviews types of complications that can occur during workover operations. The course covers workover fundamentals with a focus on understanding well control in relation to Drilling versus Workover. The class covers workover essentials such as barriers, equipment, and relevant well control methods; it also includes an in-depth review of Bullheading and Reverse Circulation techniques.

Oil and Gas Operator Representative
The Oil and Gas Operator Representative Course reviews types of well control complications that can occur during workover, coiled tubing, snubbing, and wireline operations. The course covers well control fundamentals with a focus on understanding well control in relation to well servicing. Well Servicing essentials such as barriers, equipment, and relevant well control methods are taught as well as specific difficulties with working both dead and live wells.

Advanced Subsea
The Advanced Subsea Well Control curriculum is taught as part of the IADC WellCAP PLUS® program. It uses a methodological discovery process to improve critical thinking and problem-solving skills in subsea well control. Real-world subsea well control scenarios are used in a realistic team-based approach to help students develop the technical and nontechnical skills essential for improving drilling and safety performance. The team based training enhances situational awareness, communication, leadership and decision making skills. The course encourages participation among the different levels of decision makers from multiple companies – from rig personnel to engineering staff to management – which promotes the sharing of comparable ideas, perspectives and experiences.
Well Control Course Modules
In addition to offering the certified courses listed above, Wild Well also offers the following non-certified Well Control Course Modules focusing on specific disciplines:

Air Drilling
This course covers the basics of air drilling equipment, the types of air drilling, differences between mud and air drilling, how to apply well control principles to air drilling operations, and sets aside time for the discussion of specialized equipment that allows the operator to drill much faster with air than with water or other fluids.

Stuck Pipe
Stuck Pipe provides a review of the fundamentals, including differential sticking, mechanical sticking, and packoff and bridging. Students gain an understanding of wellbore geometry and the significance of geologic formations when handling stuck pipe operations.
SPECIALIZED TRAINING SERVICES

Training to Reduce Unscheduled Events (TRUE)
TRUE was developed to educate the rig team in a collaborative environment on the early identification of events, their causes and the potential actions to mitigate their impact. TRUE requires the personnel to pull together and use teamwork to confront the problem. The training is typically conducted in 3-day concentrated sessions where the team is immersed. Many operators conduct the training during mobilization, commissioning, or offsite so that they have the undivided attention of the crew.

HPHT Well Control Training
This specialized course provides students with specific knowledge and skills related to high pressure, high temperature (HPHT) well control with a focus on key characteristics and challenges of drilling in HPHT downhole environments.

Accumulator Workshops
Accumulator Workshops develop a crew’s practical and operational understanding of the accumulator system in the following areas:
- Equipment components and appropriate pressures
- Accumulator checklist to ensure proper functioning
- Maintenance musts for top-notch operational performance
- Accumulator bottle inner workings for inside-out know-how
- Troubleshooting to recognize potential issues

Crew Awareness Orientation
Lasting approximately 45-60 minutes per session and delivered to each tour crew, these orientations are conducted on-site and are directed at all rig personnel – from the Roustabout to Tool Pusher. Crew Awareness Orientations focus on enhancing a rig crew’s understanding of blowouts and how they occur/evolve, and also emphasizes the importance of early kick detection and proper shut-in procedures and response.

Ideally, this service would be delivered in association with a survey of the rig’s well control equipment once the BOP has been nipped up and tested on the surface casing.

Incident Command System (ICS) Training
Instructor led, NIMS-based Incident Command System training is focused on well control incidents. All ICS Training courses include hands-on, scenario based activities designed to give students the knowledge and tools for operating under the ICS and Unified Command structure during well site emergencies.

Well Control Incident Management Training
Our courses prepare companies, regulators, and first responders with the skills necessary to respond to and manage a well control emergency. Case studies and best practices are reviewed to ensure participants have the necessary skills to coordinate a prolonged response and work collaboratively with well control specialists in order to achieve successful outcomes to oil and gas emergencies.
ENVIRONMENTAL SERVICES

Please note the following environmental services are available for operations in the United States only.

Environmental Hazard Consulting
This includes pre-event consultation services, including contingency planning, environmental assessments, producing property due diligence and acquisition risk evaluation.

Federal, State & Local Regulatory Liaison
This service offers response agency coordination, including collaboration support, independent documentation validation, unified command assistance and post-incident investigation support.

Pollution Mitigation Advisory
Pollution Mitigation Advisory delivers hot zone-based tactical supervision of source control operations, client provided pollution contractors, waste stream management and vital receptor preservation strategies.

Environmental Restoration Technical Support
This provides post-source control pollution management, including soil and waterway remediation, decontamination, clean-up contractor vetting and special services referrals.

Pollution Response Preparedness Training & Exercises
Pollution Response Preparedness Training & Exercises offer full-spectrum incident management training, including NIMS ICS, first responder and community outreach training, tabletop, and deployment response drills and exercises.