WellSHARP Drilling & Workover

Surface Well Control Course Outline
IADC

Interactive Study Tools
- Provide students with over 600 pages of pre-course study materials at wildwell.com
- Provide students with study guide that covers up to 150 interactive well control questions and answers.
- Provide students with a 50 question test to determine their well control knowledge gaps.

Preliminary Items
- Safety: escape routes, muster points, etc.
- Discussion of special needs
- Introductions
- Class paperwork

DRILLING:
Serious Well Control Problem From the Wild Well Library
- Students form teams
- Team discussion of the potential well control problem
- Simulator exercise demonstrating the well control challenge
- Return to class to discuss the challenge

Well Control Course Objectives
- Formations, pore pressure, fracture gradients
- Killsheet, kick detection, flow checks, well shut-in, and gas behavior
- Well control methods
- Well control equipment (barriers, BOPs, manifolds, accumulator, etc.)
- Completing the well and post-completion activity
- Final well control simulation: from kick to kill, with a complication
- Assessments: skills and written

Formations, Pore Pressure, Fracture Gradient
- Formation structure
 ■ Porosity
 ■ Permeability
- Fracture gradients, kick tolerance, pore pressures
- Related formulas/math (hydrostatic pressure, the U tube, force, MAASP, etc.)
- Equivalent mud weight
- Kick tolerance
- Pore pressure vs. fracture gradient (drilling margin/window)
- Simulator exercise demonstrating a FIT; discussion of LOT
 (if needed, depending upon class knowledge level)
- Discuss casing and cementing program
- Discuss drilling fluids program

Barriers
- Philosophy and operation of barrier systems
- Number of barriers for safe operation
- Testing barriers

Shallow Gas, Water Flows and Tophole Drilling
- Definitions and causes of pressure in tophole formations
- Causes of underbalance tophole
- Diverting practices
- Tophole drilling practices and causes of kicks

Abnormal Pressure Warning Signs
- Abnormal pressure
- Shaker evidence
- Changes in mud properties
- Changes in drilling data/parameters

Killsheet, Kick Detection, Flow Checks, Well Shut-in, and Gas Behavior
- Related formulas/math (capacities/volumes, strokes, circulation times, etc.)
- Causes of kicks
- Kick signs
 ■ Overt kick signs
 ■ Pre-kick signs
- Flow-check procedures
- Shut-in procedures
 ■ Hard shut-in
 ■ Soft shut-in
 ■ Shut-in challenges
- Paper killsheet with preliminary well data
 ■ Well data, volume calculations
 ■ Discuss the importance of a killsheet
- Simulator exercises demonstrating hard and soft shut-in
- Kick detection and shut-in
- Students complete killsheet with simulator well data
 (or instructor-given data)
- Discussion of killsheet calculations:
 ■ What do they mean? (if needed) Discussion of IADC WellSharp rounding rules
- Gas behavior
 ■ While drilling
 ■ In horizontal wells
 ■ While shut-in

Well Control Methods
- Review of related formulas/math (capacities/volumes, strokes, circulation times, kill mud, MAASP, ICP, FCP, etc.)
- Wait and Weight Method
 ■ Discussion of Wait and Weight
 - Techniques
 - Skills (pump startup, step-down chart, gauge use, lag time, etc.)
 ■ Simulator exercise
- Driller’s Method
 ■ Discussion of Driller’s Method
 - Techniques
 - Skills (pump startup, capturing pressure after first circulation, lag time, etc.)
 ■ Simulator exercise
WellSHARP Drilling & Workover

Surface Well Control Course Outline

IADC

- Volumetric and Lube and Bleed
 - Discussion of Volumetric Method
 - Formulas
 - Understanding the process and technique
 - Skills (use of electronic killsheet or paper graph, managing gas migration)
- Simulator exercise
- Discussion of Lube and Bleed

Stripping Pipe Under Pressure
- Discussion of technique
- Skills (annular pressure, speed of strip, managing wellbore pressures via volumetric method)
- Simulator exercise

Bullhead Method – Discussion and simulator exercise if time allows

Discussion of study guide questions

Well Control Drills
- Pit drills
- Trip drills
- Stripping drills
- Choke drills
- Early response and empowerment to act

Completing the well and post-completion activity: short discussion
- Completions
- Differences between drilling and workover

Final simulator exercise (if time allows)
- Abnormal lateral well and kick detection
- Kill the well with Wait and Weight Method

Discussion
- Ballooning wells vs. kicking wells
- Fingerprinting

Discussion of Study Guide Questions

Skills Assessment

WORKOVER:

Learning objectives
- Operations
- Barriers
- Bullhead Method
- Complications
- Reverse Circulation Method
- Unconventional well control
- Lube and Bleed Method

Operations
- Completion design
 - Reservoir considerations
 - Production methods
- Workover operations
 - Drilling vs. workover well control considerations
 - Equipment considerations

Barriers
- Fluids
- Mechanical

Bullhead Method
- Calculations
 - Kill fluid
 - Volumes
 - Pressure considerations
- Graphing a bullhead method
- Bullhead simulation exercise
- Bullhead method killsheet
- Bullhead simulation exercise with a killsheet

Complications
- Surface
- Downhole
- Bullhead complications simulation

Reverse Circulation Method
- Effects of friction
- Complications
- Reverse Circulation simulation

Unconventional Well Control
- Pill and Kill
- Top kill
- Rolling the Hole
- Volumetric Method

Lube and Bleed Method
- Discussion of the process
- Lube and Bleed simulation

Computer-Based Wellsharp Exam